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We present a method-of-lines solution procedure for modelling charge transport
and recombination in organic light-emitting diodes operating in the trap-free space-
charge-limited regime. The numerical procedure employs a spatial remeshing algo-
rithm based on equidistribution principles as reported by Sanz-Serna and Christie
(1986, J. Comput. Phys. 67, 348) and incorporates additional refinements proposed
by Revilla (1986, Int. J. Numer. Methods Eng. 23, 2263) and Saucez et al. (1996,
J. Comput. Phys. 128, 274). The method, which does not give rise to ill-conditioned
series of differential equations, offers rapid convergence to the steady state and is es-
pecially well suited to systems of equations displaying steep moving solution fronts.
The technique is readily extended to more complex systems. c© 2002 Elsevier Science (USA)
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INTRODUCTION

Molecular semiconductors have been attracting considerable scientific and commercial
interest owing to their potential application in a wide range of electronic devices, including
light-emitting diodes (LEDs), solar cells, and thin-film transistors [1]. There has been
considerable progress in the development of molecular devices over the past 10 years with,
for example, organic LEDs now entering the marketplace as viable contenders to existing
inorganic technologies [1]. To some extent, however, attempts to optimise the efficiencies
and performance of molecular devices have been hindered by the relative absence of detailed
theoretical models describing device behaviour. As with inorganic devices, the injection,
transport, and recombination dynamics of charge carriers in organic devices are governed
by series of highly nonlinear coupled differential equations. In general these equations are
found to be algebraically intractable, and consequently there is considerable interest in the
development of effective numerical algorithms for their solution.
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Although a number of commercial software packages are available for simulating trans-
port processes, these have generally been developed for inorganic device materials such
as Si and GaAs. Organic semiconductors differ considerably from their inorganic counter-
parts, exhibiting for example very low carrier mobilities (∼10−10 m2 V−1 s−1), low relative
permittivities (∼3.5), and long recombination times (rate constants for electron–hole re-
combination ∼10−18 m3 s−1). An important consequence is that space-charge effects are
typically more pronounced in organic devices—it is easier to accumulate regions of ex-
cess electronic space-charge in the semiconductor bulk—and hence the concentrations of
the charge carriers vary more rapidly in space. These features create difficulties for most
commercial packages and as a result many researchers have elected to develop their own
algorithms for modelling organic devices. Notable work in this area has for example been
reported by Torpey [2], Tessler [3], and the groups of Bassler [4], Friend [5], and Scott [6].
Details of the methodologies used by these researchers are somewhat scarce. However, most
have used either the method of lines (MOL) or relaxation techniques to infer the steady-state
dynamics of operational devices, in which the coupled differential equations are approxi-
mated by a series of simultaneous finite-difference equations, evaluated on a uniform, fixed
grid. We refer to this technique as the uniform grid method (UGM).

Although the effectiveness of the MOL approach has been successfully demonstrated by
the aforementioned researchers, it is nevertheless the case that the use of a fixed grid of
uniform data points is computationally inefficient [7]. This is particularly true for systems
of evolutionary partial differential equations with solutions displaying steep moving fronts,
because a large number of data points (or nodes) must be used to obtain an adequate
solution. An obvious example in the field of molecular semiconductors is the light-emitting
electrochemical cell where the accumulation of uncompensated mobile ionic charge in the
vicinity of the two electrodes creates exceptionally high electric fields [8–10]. However,
even for the comparatively simple case of a conventional trap-free space-charge-limited
organic light-emitting diode, the fixed-grid MOL approach is computationally wasteful, and
significant efficiency gains may be obtained by switching to an adaptive grid methodology.
These limitations have previously been noted by Malliaras and Scott, who reported that
their use of a uniform grid prevented them from investigating the behaviour of LEDs
operating under conditions of high carrier injection; the charge density inside the device
varied too rapidly to be accurately digitised with a grid comprising 200 uniformly spaced
grid points [6].

The MOL procedure just outlined may be refined by replacing the uniform grid with
an adaptive mesh that responds to the evolving shape of the solution profile. Two types of
adaptation algorithm may be envisaged: dynamic remeshing, in which the grid is updated
continuously as the solution evolves, and static remeshing, in which the grid is updated
at discrete time intervals. In dynamic techniques, the nodes generally move according to
ordinary differential equations (ODEs) coupled to the problem equations. This often gives
rise to ill-conditioned sets of differential equations, which is particularly undesirable in the
present application as Poisson’s equation itself is liable to create problems of ill-conditioning
before the adaptation procedure is even considered.

In this paper we instead employ a static spatial remeshing method (SRM) based on
equidistribution of an appropriate functional, as previously reported by Revilla [7]. In
essence the system of differential equations is allowed to evolve in time according to
the standard MOL procedure but the grid is periodically recalculated to ensure that the
grid points are primarily concentrated in the spatial regions where the solution is rapidly
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changing. A notable advantage of the static SRM is that the remeshing algorithm is indepen-
dent of the system of equations under study, and hence it may be reused without change to
investigate additional problems. Furthermore, as reported by Wouver et al., static methods
are highly competitive with more complex problem-specific dynamic remeshing algorithms
and, importantly, do not give rise to ill-conditioned sets of differential equations [11].

Wouver has previously noted that a considerable gap persists between state-of-the-art
numerical solution procedures and current practice, with adaptive methods of the kind em-
ployed here being largely confined to the field of applied mathematics rather than broader
areas of contemporary research in the physical sciences [11]. In this paper, we demonstrate
how static remeshing may be straightforwardly and effectively incorporated into an MOL
simulation of a single-layer LED. The example chosen clearly illustrates the power of the
SRM, permitting considerably improved accuracy at markedly lower computational over-
head. Our approach is easily extended to more complex systems—such as injection-limited
LEDs with trap sites and light-emitting electrochemical cells—as we show elsewhere [12].
The numerical procedure outlined in this paper has been designed to address a number of
specific requirements: high spatial resolution for accurately modelling steep moving solu-
tion fronts; good numerical stability for handling high carrier concentrations and low (or
sharply differing) electron and hole mobilities; faithful replication of temporal dynamics;
and flexible and extensible program structure and good overall numerical efficiency. The
procedure is found to serve well as a general purpose technique for simulating organic de-
vices, including LEDs operating under steady-state or pulsed conditions and light-emitting
electrochemical cells.

THE TRANSPORT EQUATIONS

A typical single-layer LED comprises a layer of intrinsic molecular semiconductor (typi-
cally of thickness 100 to 200 nm) sandwiched between a metallic cathode and a transparent
anode such as indium tin oxide [1]. As the semiconductors are used in an undoped state,
and the π–π∗ energy gap is typically 2–3 eV, the LED is best viewed as a metal–insulator–
metal structure. In general, the current flowing through the device will be determined by the
impedances of the electrode–semiconductor interfaces and the transport characteristics of
the bulk semiconductor. Two extreme situations may be considered: the injection-limited
regime [13] or the space-charge-limited regime [14]. In the injection-limited case it is as-
sumed that the impedance of the bulk semiconductor is small compared to the impedances
of the electrode–semiconductor interfaces. In the space-charge-limited case, by contrast,
the impedances of the electrode–semiconductor interfaces are assumed to be so low that
the behaviour of the device is governed entirely by the mobility of the charge carriers in the
semiconductor. In this paper we consider the space-charge-limited regime, which is typical
of properly specified commercial devices for which the electrodes have been well matched
to the energy bands of the semiconductor. However, as shown elsewhere, the method-of-
lines framework allows for the straightforward incorporation of many additional effects,
including interfacial impedances, field-dependent mobilities (via appropriate modification
of Eqs. (10) and (11)) and exciton diffusion [6, 15]. The approach is readily extended to
multilayered structures, without requiring substantial revision of the underlying code. In all
cases use of an adaptive grid improves the efficiency of the MOL algorithm.

We assume that the semiconductor has a negligible intrinsic carrier density and is trap-
free and that carrier mobilities are independent of the internal electric field. The organic
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film has a thickness d , the anode is located at x = 0, and the cathode is at x = d. Neglecting
interfacial impedances, the cathode and anode are assumed to supply fixed concentrations
nd

e and n0
h of electrons and holes respectively, with the charge densities falling to zero at the

counterelectrode (i.e., n0
e = 0 and nd

h = 0). The time evolution of the charge distributions
is governed by Poisson’s equation (1)

∇2
x φ = −e

ε
(nh − ne) (1)

and the transport equations for electrons and holes,

∂ne

∂t
= −∇x je − kehnenh, (2)

∂nh

∂t
= −∇x jh − kehnenh . (3)

The fluxes are given by

je = −µe

(
kT

e
∇x ne − ne∇xφ

)
, (4)

jh = −µh

(
kT

e
∇x nh + nh∇xφ

)
. (5)

In these equations, φ is the electric potential; n, µ, and j refer to the concentrations,
mobilities, and fluxes of the charge carriers respectively; and the subscripts e and h signify
electrons and holes. keh is the (Langevin) electron–hole recombination rate and we have
assumed that the Einstein relationship between diffusivity and mobility applies. All other
symbols have their usual meanings. We stress that the transport equations employed here
been chosen for illustrative purposes only and the technique may be readily applied to other
systems with minimal effort.

It is helpful to recast Eqs. (2)–(5) using the dimensionless variables χ = x/d, V =
−eφ/kT , ue = ne/nd

e , and uh = nh/n0
h , whereupon we obtain

∇2
χ V = ed2

ε

(
e

kT

)(
nd

e ue − n0
huh

)
, (6)

∂ue

∂t
= µe

d2

(
kT

e

)(∇2
χue + ∇χue∇χ V + ue∇2

χ V
) − kehn0

hueuh, (7)

∂uh

∂t
= µh

d2

(
kT

e

)(∇2
χuh − ∇χuh∇χ V − uh∇2

χ V
) − kehnd

e ueuh . (8)

The partial differential equations may be transformed into a series of coupled ODEs
by approximating the spatial derivatives numerically. This is achieved in a straightforward
manner by replacing the continuous variables ue(χ, t), uh(χ, t), and V (χ, t) with discrete
vector expressions ue, uh, and V and by replacing the differential operators ∇χ and ∇2

χ

with finite-difference matrices D1 and D2 (i.e., premultiplication of uh by D1 for instance
returns the first derivative of uh with respect to χ). This yields

D2V = ed2

ε

(
e

kT

)(
nd

e ue − n0
huh

)
, (9)
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∂ue

∂t
= µe

d2

(
kT

e

)
{D2ue + (D1ue) ◦ (D1V) + ue ◦ D2V} − kehn0

hue ◦ uh, (10)

∂uh

∂t
= µh

d2

(
kT

e

)
{D2uh − (D1uh) ◦ (D1V) − uh ◦ D2V} − kehnd

e ue ◦ uh, (11)

with a ◦ b representing the element-by-element vector multiplication of a and b.
The choice of an appropriate finite-difference scheme for evaluating D1 and D2 is some-

what problem dependent with higher order schemes offering greater accuracy at the ex-
pense of additional computational overhead for each time step. For most situations a simple
three-point scheme is adequate although, for very steep moving fronts, convergence may
sometimes be obtained more rapidly using higher order schemes. In this paper, we use
seven-point finite-difference formulas, determined using the Lagrange polynomial method
of Fornberg [16].

The MOL approach typically requires the equations to be expressed as explicit first-order
differential equations with respect to time (or alternatively Eqs. (9)–(11) may be posed and
subsequently solved as a mass-matrix problem). Equations (10) and (11) are already in
the appropriate form, but (9) must be modified before use. Medlin et al. have previously
reported the use of a so-called pseudo-Poisson equation, where a modified equation of the
form ∂φ

∂t = ∇2
x φ + e

ε
{nh − ne} is used in place of the Poisson’s equation [17]. The pseudo-

Poisson approach offers rapid convergence to the true steady-state solution but does not
provide insight into the time evolution of the system owing to its inherent artificiality. It
is also susceptible to numerical instabilities. We employ a different, and somewhat more
intuitive, approach here in which (9) is differentiated with respect to time and both sides of
the resultant equation are premultiplied by the inverse matrix D−1

2 (where D2 D−1
2 = I ) to

obtain.

∂V
∂t

= ed2

ε

(
e

kT

)
D−1

2

(
nd

e

∂ue

∂t
− n0

h

∂uh

∂t

)
. (12)

Although D−1
2 may be explicitly determined, evaluating ∂V/∂t in this manner is com-

putationally inefficient because D2 is a band-diagonal sparse matrix whereas D−1
2 is full.

It is therefore preferable to evaluate the right-hand side of (12) in a manner which takes
advantage of the sparsity of D2. (This may be achieved for example by performing an LU
decomposition of D2 preceded by a minimum-degree preordering [18].)

Equations (10)–(12) may be integrated forward in time using an appropriate ODE integra-
tor. Spatial discretisation of the partial differential equations results in a system of highly stiff
ordinary differential equations and consequently it is necessary to employ an appropriate
stiff numerical solver. Saucez et al. report successful use of an implicit Runge–Kutta method
for many systems [19]. In this problem, we have had greater success with variable-step,
variable-order backwards differentiation formulas, owing perhaps to the extreme stiffness
of the differential equations. (Specifically, we employ a quasi-constant-step-size implemen-
tation in terms of backward differences of the Klopfenstein–Shampine family of numerical
differentiation formulas of orders one to five [20].) We note, however, that variable-order
solvers are in general less desirable for static remeshing procedures as they must be reset
to first order after every remeshing process, reducing numerical efficiency. Variable-step
implicit Runge–Kutta integrators do not require information about the past history of the
dependent variables and are therefore usually better suited to periodic remeshing.
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The remeshing algorithm is intended to locate nodes preferentially in regions where the
solution is rapidly changing at the expense of coverage in quieter areas. This may be achieved
simply and effectively by equidistribution of an appropriate functional. Sanz-Serna, for
example, proposed a mesh algorithm to relocate mesh points at equal distances along the
solution arc [21]. This represents a significant improvement over the usual equidistribution
of mesh points along the spatial axis. However, as observed by Revilla, equidistribution
by arc length still leads to an excessive number of nodes in regions where the solution is
linear [7]. Revilla therefore proposed an alternative equidistribution scheme based on the
curvature of the solution that under many circumstances leads to a more optimal distribution
of grid points. Hybrid schemes may also be envisaged to allow for adequate coverage in
both linear regions and those of high curvature. Saucez et al. have reported an extension to
the approaches of Sanz-Serna and Revilla which under many circumstances offers superior
performance [11, 19].

Here we use the equidistribution function proposed by Revilla which involves equidis-
tribution of a functional m(s) based on the curvature of the solution ∂2s(χ, t)/∂χ2. The
equidistribution criterion we use is

χi∫
χi−1

m(s(χ, t)) dχ =
χi∫

χi−1

(
α +

∥∥∥∥∂2s(χ, t)

∂χ2

∥∥∥∥
)1/2

dχ = constant, (13)

where s is the solution vector and α is a problem-dependent parameter, and is discussed
more completely in the Appendix and Ref. [7].

In the case of the LED there are three possible solution curves we could consider for
performing the equidistribution process: ne(x), nh(x), and φ(x). The electric potential—or
its dimensionless equivalent V (χ)—is the obvious choice here as its curvature depends
directly on the changing concentrations of electrons and holes. Moreover, given the integral
relationship between the potential and the charge densities, φ(x) is typically the smoothest
of the three functions and is therefore best suited to the remeshing algorithm. Following
the approach of Adjerid and Flaherty [22], the time integration is halted and the spatial
grid is updated periodically after a fixed number nsteps of integration steps. Since the time
increments used by the ODE solver will become smaller when the solution is changing
rapidly, this approach ensures that grid updates occur most frequently during periods of
intense activity.

SOLUTION OF THE TRANSPORT EQUATIONS

In this paper, we concentrate primarily on the numerical properties of the fixed-grid and
adaptive grid algorithms, and we defer discussion of the physical significance of the results to
a separate paper [12]. Incorporation of a remeshing algorithm into the MOL procedure leads
to substantial improvements in numerical efficiency. This is primarily because the number
of grid points may be substantially reduced for any prescribed level of accuracy. Sanz-Serna
and Christie [21] and Revilla [7] have reported that the number of nodes may be reduced by
up to a factor of 12 according to the problem under study and the choice of equidistribution
function. It should be stressed that, since computational overhead increases superlinearly
with the number of nodes, the ability to reduce grid size leads to very substantial savings
in computing time.
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There are two important sources of error in MOL algorithms: errors associated with the
time integration and discretisation errors arising from the use of a finite grid. To ensure
that spatial errors dominated the results reported here, time integration was performed
using strict relative and absolute error tolerances of 10−7. It is desirable to compare the
numerical results with known analytical solutions, but this is not generally possible owing
to the intractability of the coupled differential equations. An exact analytical solution has
been reported by Mott and Gurney for the specific case of Ohmic injection of a single
carrier type into an insulator, neglecting diffusion, in which case the electric potential
varies as �(Bx + C)3/2 − C3/2, where x is the distance from the injecting contact and B
and C are constants that depend on the current density and the device parameters [14].
This (nonphysical) diffusion-free situation is difficult to simulate numerically owing to the
absence of diffusion effects that would otherwise broaden the solution fronts, and rigorous
evaluation of numerical errors is not therefore possible even for this one exactly soluble
situation. It is however possible to reduce the diffusivities of the charge carriers to relatively
small levels without adversely affecting numerical convergence by reducing the notional
temperature. Cautious comparison between the numerical and analytical results is then
possible, although discrepancies between the two solutions are more likely to arise from
genuine physical differences between the systems studied than errors in the numerical
simulation.

The simulations in Figs. 1–3 were carried out at a notional temperature of 3 K cor-
responding to diffusivities 100 times smaller than their room temperature values. The re-
maining parameters—chosen to ensure steep solution profiles at the injecting contact—were
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FIG. 1. Numerical simulations of the steady-state electric potential in LEDs operating in the unipolar space-
charge-limited regime, determined using 41-node uniform and adaptive grids. Parameters for the unipolar problem
were n0

h = 1023 m−3, µh = 10−7 m2 V−1 s−1, φ0 − φd = 2 V, εr = 3.4, and d = 1 µm. The analytical solution
(assuming zero diffusion) is shown for reference.
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FIG. 2. Numerical simulations of the steady-state hole distribution in LEDs operating in the unipolar space-
charge-limited regime, determined using 41-node uniform and adaptive grids. The UGM solution displays an
unphysical discontinuity in the first derivative. The SRM solution varies smoothly with position and is consistent
with physical expectation. The linearity of the SRM solution in the immediate vicinity of the electrode suggests
that a more accurate solution might be obtained by increasing the number of grid points. The same parameters
were used as for Fig. 1.

n0
h = 1023 m−3, µh = 10−7 m2 V−1 s−1, φ0 − φd = 2V, εr = 3.4, and d = 1 µm. Figure 1

shows solutions for the steady-state electric potential obtained using uniform and adaptive
grids with 41 nodes. In each case a reasonable approximation of the analytical solution
for the electric potential is obtained, with the UGM having an average root-mean squared
deviation from the analytical solution of 0.9%, and the SRM showing a deviation of 0.6%.
The small deviations obtained confirm—at least in a semiquantitative sense—the validity
of the MOL approach in both cases, but they do not in themselves suggest there is a ma-
jor advantage to using spatial remeshing in this instance. This, however, is to be expected
since the profile of the electric potential generally varies smoothly and slowly in space. The
steady-state charge density on the other hand changes extremely rapidly in the vicinity of the
injecting electrode and therefore represents a more exacting numerical challenge. Figure 2
shows the profile of holes close to the anode determined using the same 41-node uniform
and adaptive grids. The UGM solution is clearly unsatisfactory, exhibiting an unphysical
discontinuity in the first derivative. The SRM solution by contrast varies fairly smoothly
with distance away from the electrode, which is consistent with physical expectation. The
linear nature of the 41-node SRM solution in the immediate vicinity of the electrode sug-
gests that a superior solution might be obtained by increasing the number of nodes. Figure 3
shows the profiles of holes determined using uniform and spatial grids with 101 nodes. The
101-node SRM solution varies smoothly with distance from the electrode, albeit slightly
more sharply than in Fig. 2. Its profile was not found to alter noticeably with larger numbers
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FIG. 3. Numerical simulations of the steady-state hole distribution in LEDs operating in the unipolar space-
charge-limited regime, determined using 101-node uniform and adaptive grids. The 101-node UGM solution still
displays an unphysical discontinuity in the first derivative and is inferior even to the 41-node SRM solution. The
101-node SRM solution varies smoothly with position and is not found to improve significantly when the number
of nodes is increased. The same parameters were used as for Fig. 1.

of grid points, confirming the adequacy of 101-node remeshing for this particular problem.
The 101-node UGM solution by contrast still displays an unphysical discontinuity in the
first derivative, implying the need for yet more grid points. In fact, to obtain an acceptable
solution using the UGM, it would be necessary to use at least 400 nodes (corresponding to
2.5-nm spatial resolution), which in practice was not possible as the underlying ODE solver
would not converge for a problem of this size. Figure 4 shows the steady-state hole profiles
for a bipolar device operating at 3 K using the same parameters as before to ensure steep
solution profiles, and additionally nd

e = 1023 m−3 and µe = 10−7 m2 V−1 s−1. (The profile
of the electron distribution, which is not shown, mirrors that of the hole distribution for the
parameters selected.) The solutions were determined using 151-node uniform and adaptive
grids. The SRM is again found to deliver far superior solutions by concentrating nodes in
regions close to the anode and the cathode at the expense of coverage in the bulk of the
device.

The ability to limit the number of nodes and place them in optimal locations leads to
substantial improvements in the efficiency of the MOL algorithm. Table I presents com-
putational statistics for the fixed and adaptive grids. In spite of the additional overhead
associated with periodically halting the time integration and assigning new mesh points, for
larger grids, adaptation usually hastens convergence to the steady state whilst simultaneously
offering superior spatial resolution (in the regions where it is needed). The performance of
the UGM can in principle be improved to an arbitrary extent by increasing the number of
nodes. However, in practice, as can be seen from the illustrative CPU statistics, relatively
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TABLE I

Computational Statistics for Simulations of Single-Layer LEDs Operating in the Space-

Charge-Limited Regime, Determined Using a Fixed Uniform Grid (×) and Static Spatial

Remeshing (�)

STEPS FSTEPS
Simulation Nodes Regridding (successful) (failed) FNS JACS CPU (s)

Unipolar injection 41 × 825 75 1722 2 11
� 882 49 2205 7 14

101 × 6791 122 28994 50 641
� 5420 84 15058 27 343

151 × 3453 916 164058 344 3097
� 8379 248 61918 112 1661

201 × 14632 1168 332894 500 11435
� 11472 649 165980 246 5976

Bipolar injection 151 × 10205 814 170851 342 3912
� 8012 202 54132 97 1686

Note. STEPS is the number of successful time steps required to complete the simulation; FSTEPS is the number
of failed steps; FNS is the number of function evaluations; JACS is the number of Jacobian evaluations; and CPU,
which is given for information only, is the computational time using a 750-MHz Athlon processor. For larger
grid sizes, adaptive remeshing is seen to hasten numerical convergence. Parameters for the unipolar problem were
n0

h = 1023 m−3, µh = 10−7 m2 V−1 s−1, φ0 − φd = 2 V, εr = 3.4, and d = 1 µm. The same parameters were used
for the bipolar problem with nd

e = 1023 m−3 and µe = 10−7 m2 V−1 s−1.
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FIG. 4. Numerical simulations of the steady-state hole distribution in LEDs operating in the bipolar space-
charge-limited regime, determined using 151-node uniform and adaptive grids. The SRM solution offers higher
spatial resolution in the regions of interest. The same parameters were used as for Fig. 1 with nd

e = 1023 m−3 and
µe = 10−7 m2 V−1 s−1.
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small increases in grid size can lead to exceptionally large increases in convergence time
(and excessive memory requirements, which may in turn cause the underlying ODE solver
to fail). Spatial remeshing to some extent circumvents this problem by (i) reducing the
number of nodes required to obtain a satisfactory solution and (ii) hastening numerical
convergence for that particular number of grid points. In the unipolar space-charge-limited
regime considered here, for example, the superior 101-node steady-state SRM solution was
obtained approximately 20 times “faster” than the 201-node UGM solution. Grid adaptation
therefore represents a very important technique for the successful numerical investigation
of organic devices. Moreover, as we shall show in a later paper, for simulating devices
such as light-emitting electrochemical cells in which extremely high fields exist close to
each interface, spatial remeshing is absolutely necessary if an answer is to be obtained
at all.

To some extent the effectiveness of fixed-grid algorithms may be improved by preferen-
tially locating nodes in areas of known activity. This, however, requires a priori knowledge
of the solution, obtained (at a cost), for example, by first solving the problem using a uniform
grid. Because the SRM adapts to the evolving system of equations, no a priori knowledge
of the solution curve is required. It should also be noted that for certain problems, such as
the light-emitting electrochemical cell [8–10], the profile of the solution changes radically
with time. In such cases, preferential deployment of fixed grid points in locations deter-
mined by the final profile of the (steady-state) solution may actually reduce efficiency by
hindering the evolution of the equations at earlier times. This problem does not arise with
grid adaptation as the nodes are regularly relocated in spatial regions of high activity.

CONCLUSION

We have used a simple but effective method-of-lines approach for solving the highly
nonlinear coupled differential equations which govern the behaviour of organic space-
charge-limited light-emitting diodes. Use of an adaptive mesh allows the number of nodes
to be reduced substantially for any prescribed level of accuracy, leading to considerable
increases in numerical efficiency. The static remeshing algorithm we employ here, based
on the approach of Revilla [7], requires no a priori knowledge of the solution curve and
hastens conversion to the steady-state solution. The algorithm is independent of the system of
equations under study and may be applied to other problems without change. Importantly,
and unlike dynamic remeshing algorithms, it does not give rise to ill-conditioned sets
of differential equations. Overall, the procedure is found to offer a general purpose and
numerically efficient approach to simulating a wide range or organic devices.

APPENDIX

The remeshing algorithm is invoked after the time integrator has completed a total of
nsteps iterations. As discussed previously, the vector expression V is first used to calculate
the equidistribution function defined by

I (χ ′, t) =
χ ′∫

0

(
α +

∥∥∥∥∂2V (χ, t)

∂χ2

∥∥∥∥
)1/2

dχ. (A1)
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It is necessary to specify two parameters in the equidistribution function, α and β: α mod-
ifies the relative importance of values of the dependent and independent variables; and β

prevents excessive clustering of nodes (which in turn causes numerical difficulties) by plac-
ing a ceiling on overly high values of the second derivative. If the value of ∂2V (χ, t)/∂χ2

exceeds β anywhere along the solution arc, ∂2V (χ, t)/∂χ2 is reduced to a value of β be-
fore evaluating (A1). For all situations reported here, α and β were set to the empirically
determined values of 1 and 60 respectively.

The form of the functional in (A1) is justified fully in Ref. [7] so we provide only a
brief explanation here. In short, the integrand of (A1) involves the second derivative of the
solution V (χ, t) and is therefore related to its curvature. I (χ ′, t) may be interpreted as a
cumulative measure of the solution curvature in the range 0 ≤ χ ≤ χ ′. According to the
equidistribution principle, the locations of the new data points should be chosen to ensure
that I (χ) increases by the same amount in moving between successive nodes; this is stated
mathematically as

χi∫
χi−1

(
α +

∥∥∥∥∂2V (χ, t)

∂χ2

∥∥∥∥
)1/2

dχ = constant =
(

I (1, t)

N − 1

)
. (A2)

Combining (A1) and (A2) we obtain

I
(
χnew

i , t
) =

(
(i − 1) × I (1, t)

N − 1

)
, (A3)

and finally

χnew
1 , χnew

2 , . . . , χnew
N−1, χ

new
N = 0, I −1

(
1 × I (1, t)

N − 1

)
, . . . , I −1

(
(N − 2) × I (1, t)

N − 1

)
, 1

(A4)

where N is the number of nodes and I −1[I (χ ′)] = χ ′, which provides the locations of the
new nodes.

After determining the spatial locations of the new nodes, we may obtain estimates of the
corresponding values of V , ue, and uh using Lagrange polynomial interpolation [16]. The
time integration is then restarted and continues until a further nsteps iterations have been
completed, following which the remeshing algorithm is again invoked.
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